Air source heat pumps
Air source heat pumps (ASHPs) use the external air as a heat source to provide heat for buildings.
They work by running a low-temperature, lower pressure refrigerant fluid in heat exchanger coils through the external air. The fluid ‘absorbs’ heat from the air and boils, even at temperatures below 0° C (although the coefficient of performance (COP) decreases with lower temperature). The gas is then compressed, which further increases its temperature. The gas is passed into heat exchanger coils, where it condenses, releasing its latent heat. The process then repeats.
This is the same process that is used to extract heat from a fridge. It can be used domestically or commercially and some systems can also be used to extract heat from a building to provide cooling.
Air source heat pumps can be air-to-water systems (providing hot water for direct use or to supply radiators or underfloor heating systems), or air-to-air systems (providing hot air, either directly into an internal space, or to be distributed by fans throughout a building).
Air source heat pumps can reduce energy consumption, fuel bills and carbon emissions, particularly where there is no mains gas supply, and so alternative heating systems would consume electricity, liquid petroleum gas (LPG), oil, or coal.
They require the siting of one or more units, similar to an air conditioning units, outside the building. This may require planning permission, although in some areas, some installations may be considered to be ‘permitted developments’. Siting is important, as units can generate noise, and an electricity supply is required.
Air-to-water systems are most effective when providing lower-temperature hot water, over a longer period of time, than might be supplied by a conventional boiler. This lower-temperature hot water is appropriate for underfloor heating, or for large radiators. The coefficient of performance drops at higher sink temperatures (the temperature of the supplied water) required for smaller radiators, or for providing hot water. Higher temperature hot water might be better provided by other low-carbon systems such as solar thermal heating.
Because they provide lower-temperature hot water over long durations, they are generally most suitable for highly-insulated, air-tight buildings.
Air source heat pumps are generally low-maintenance and can be cheaper and easier to install and less disruptive than ground source heat pumps although their efficiency may be lower. Ground source heat pumps use a similar process but absorb heat from the ground, by circulating fluid through buried pipes. See ground source heat pump for more information.
Other benefits include; long life, low maintenance requirements, they are not polluting and unlike conventional heating systems they do not use combustible fuels or require flues. However, care must be taken over the selection of refrigerant, and leaks must be prevented.
Air to water heat pumps are be eligible for payments under the government’s Renewable Heat Incentive (RHI) scheme. They were eligible for funding under the Renewable Heat Premium Payment scheme, but this scheme closed on 31 March 2014 when the domestic Renewable Heat Incentive scheme was introduced. It might also be possible to obtain help with domestic installation costs through the Green Deal, however, there has been very poor uptake of the Green Deal, and it is generally considered that better financial deals are available elsewhere.
[edit] Related articles on Designing Buildings
- Absorption heat pump.
- Actuator.
- BSRIA domestic hot water heat pumps testing.
- Coefficient of Performance CoP.
- Combined heat and power CHP.
- Earth-to-air heat exchangers.
- Exhaust air heat pump.
- Geothermal piles.
- Green Deal.
- Ground energy options.
- Ground pre-conditioning of supply air.
- Ground source heat pumps.
- Heat pump.
- Renewable energy.
- Renewable energy sources: how they work and what they deliver: Part 3: Electrically driven heat pumps DG 532 3.
- Renewable Heat Incentive.
- Room-based heat pumps.
- Solar-assisted heat pump.
- Solar thermal systems.
- Thermal labyrinths.
- Water-source heat pumps.
- What is diversity in HVAC systems?
[edit] External references
Featured articles and news
Local leaders gain new powers to support local high streets
High Street Rental Auctions to be introduced from December.
Infrastructure sector posts second gain for October
With a boost for housebuilder and commercial developer contract awards.
Sustainable construction design teams survey
Shaping the Future of Sustainable Design: Your Voice Matters.
COP29; impacts of construction and updates
Amid criticism, open letters and calls for reform.
The properties of conservation rooflights
Things to consider when choosing the right product.
Adapting to meet changing needs.
London Build: A festival of construction
Co-located with the London Build Fire & Security Expo.
Tasked with locating groups of 10,000 homes with opportunity.
Delivering radical reform in the UK energy market
What are the benefits, barriers and underlying principles.
Information Management Initiative IMI
Building sector-transforming capabilities in emerging technologies.
Recent study of UK households reveals chilling home truths
Poor insulation, EPC knowledge and lack of understanding as to what retrofit might offer.
Embodied Carbon in the Built Environment
Overview, regulations, detail calculations and much more.
Why the construction sector must embrace workplace mental health support
Let’s talk; more importantly now, than ever.
Ensuring the trustworthiness of AI systems
A key growth area, including impacts for construction.
Foundations for the Future: A new model for social housing
To create a social housing pipeline, that reduces the need for continuous government funding.
Mutual Investment Models or MIMs
PPP or PFI, enhanced for public interest by the Welsh Government.
Key points and relevance to construction of meeting, due to reconvene.